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1 Introduction
Chemical Reaction Network Theory is a branch of mathematics concerned with the modeling of
real-world chemical systems. It can also be applied to other systems where objects come together
and interact to produce new materials, but the language focuses on applications to chemistry. This
area of applied mathematics relies in part on algebraic geometry to better understand the underlying
structure of chemical reaction networks. Within this field, these networks are primarily classified
according to the total number of species and reactions. Our motivation in conducting this research
is to outline and prove a classification system for the positive steady-state varieties of two-species,
two-reaction, genuine, at-most-bimolecular chemical reaction networks. Beyond this main result,
the report also provides background information on chemical reaction network theory and algebraic
geometry, and explores several potential avenues for analyzing chemical reaction networks.

Foremost within the report is the foundational information within chemistry and algebraic
geometry upon which our research is based. When attempting to model chemical systems, it is
essential to first know some chemical terminology, standard chemistry assumptions, and the general
method for graphical modeling of chemical reaction networks. Equally foundational to this research
is the algebraic geometry of the mathematical representations of these networks. To create these
models, we make assumptions regarding the relationship between the final product and the initial
chemical make-up of the system. Here we assume mass-action kinetics, which provides a clear way to
construct systems of differential equations from the networks, whose equilibria are used to construct
the steady-state varieties of these chemical reaction networks. These equations describe the change
in different chemical species with respect to time, and are explained more formally later, along with
their other algebraic properties. The equations have visual translations which provide qualitative
information about the chemical reaction networks through their geometric characteristics.

Beyond background information, this report covers several algebraic tools that we sought to
use to analyze chemical reaction networks. While not all of these tools directly resulted in the
main classification theorems, all of them furthered our understanding of the these chemical reaction
networks beyond their graphical representations.

One of our initial attempts at classification involved the algebraic analysis of the chemical
reaction networks. With the aid of the Macaulay2 software, we calculated various properties of
these networks including the degree and dimension of the steady-state and positive steady-state
ideals, and the Euclidean distance degree of the steady-state and positive steady-state varieties.
These properties aided in our understanding of the networks, but ultimately did not form the basis
of the theorems. We explored a few additional areas as well; firstly, the topic of evolutes and
how this method of analysis stemmed naturally from our previous algebraic study of the Euclidean
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distance degree. Additionally, we investigated mixed volume as a property of chemical reaction
networks. While not studied in depth, the mixed volume acts as an upper bound on the number
of positive steady-states in most cases, and allowed us to disregard irrelevant networks which had
an empty positive steady-state variety. The exact cases in which mixed-volume doesn’t provide an
accurate upper bound of positive steady-state varieties is also covered briefly, since the details of
mixed volume are beyond the scope of our work.

Another attempt at classification was a more geometric approach through the computation of the
equation and shape of the steady-state and positive steady-state varieties. This analysis eventually
led to the classification theorems, which describe the positive steady-state variety of a reaction
network without needing to generate its steady-state equations. We prove the criteria necessary for a
network to exhibit each of the four possible non-empty positive steady-state varieties. Additionally,
we calculated the same properties for all one-species networks with at most six reactions.

All of the essential Macaulay2 code, along with a spreadsheet of our calculated data, is attached
at the end of this report. The thought process behind some of these algorithms is in section 6,
Species Reaction Graphs, with an example.

2 Chemical Reaction Networks
Chemical reaction networks are used to model interactions between sets of objects called species.
The theory borrows language used in a traditional chemistry course, often describing networks in
terms of species, complexes, and the reactions between them. However, chemical reaction networks
can model more general phenomena such as biochemical interactions, pattern formation, or disease
ecology. Following the formal definition given in [5], we can define a network via its sets of com-
ponents. A chemical reaction network G = (S, C,R) is made up of three finite sets. First, a set
of species S = {A1, A2, . . . As}, which correspond to the molecules present in a reaction. Second,
a set of complexes C = {y1, y2, . . . , yp}, which are finite, non-negative, integer combinations of the
species. Finally, a set of reactions R ⊆ (C × C) \ {(y, y)|y ∈ C}, which are non-diagonal ordered
pairs of complexes. As with typical reactions studied in chemistry, these networks are represented
by the set of directed edges between complexes, seen in the following example:

A + C B + C 2B
κ1 κ2

κ3

Complexes at the tail of a reaction arrow are referred to as reactant complexes. Complexes at
the head of a reaction arrow are called product complexes. In this example, {A, B, C} is the set of
species, {A+C, B+C, 2B} is the set of complexes, and {A+C → B+C, B+C → 2B, 2B → B+C}
is the set of reactions. In addition to these three sets we define the reaction rates, one for each
reaction, called κ1, κ2, and κ3 above. The κi are positive, real parameters and can be thought
to govern the relative speed of the reactions. In this paper, the main object of study is a set of
differential equations describing the change in amount, or concentration, of the species over time.
We will use the notation x = (xA, xB , xC) where xA refers to the concentration of A at a given
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time t. Then, we generate the system

fA = d

dt
xA = −PA+C→B+C(x)

fB = d

dt
xB = PA+C→B+C(x) + PB+C→2B(x)− P2B→B+C(x)

fC = d

dt
xC = −PB+C→2B(x) + P2B→B+C(x)

where P is a stand in for the eventual terms of our equation and fA refers to the change in
concentration of A with respect to time t. The coefficients are determined by how the concentration
of A changes throughout the reactions. Here we see that the coefficient is −1 for PA+C→B+C(x)
because as the reaction A + C → B + C proceeds, it consumes one unit of A. Likewise, the other
coefficients are 0 since A is not involved in the other reactions. While a helpful demonstrator, these
equations are limited in their use. Following the assumption of mass action kinetics, polynomial
equations are instead used in the modeling of chemical systems. Mass action kinetics is a chemical
proposition dictating that the output of products is proportional to the product of the reacting
species’ concentrations [2]. Thus, our stand in function amounts would be defined as a product of
the corresponding reactant complex and rate constant. In our example, this implies that reactions
stemming from A + C are proportional to the monomial xAxC . Applying this to all equations
modeling our network yields the steady-state equations of the network shown below:

fA = −κ1xAxC

fB = κ1xAxC + κ2xBxC − κ3x2
B

fC = −κ2xBxC + κ3x2
B

These general dynamic equations are of the form

f(x) =

 fA(x)
fB(x)
fC(x)


where f(x) = N · diag(k) · xB . Here, N denotes the stoichiometric matrix, where the columns
correspond to reactions, the rows correspond to species, and the entries are yj − yi whenever
yi → yj is a reaction. For our example,

N =

−1 0 0
1 1 −1
0 −1 1


which mimics our set of equations f . Following that, we have

diag(k) =

κ1 0 0
0 κ2 0
0 0 κ3


as the diagonal matrix of reaction rates and
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B =

1 0 0
0 1 2
1 1 0


as the reactant matrix in which the column entries are yi whenever yi → yj is a reaction. Thus,

XB =

xb1

xb2

xb3

 =

x1
A x0

B x1
C

x0
A x1

B x1
C

x0
A x2

B x0
C


has row entries which represent the terms and their respective powers as monomials for each com-
plex. Using this intuition of representing chemical reaction networks as a system of polynomial
equations, we introduce an important definition:

Definition 1. A steady-state of a system f is any point x such that f(x) = 0.

In other words, we can think of a steady-state as a point at which none of the species’ con-
centrations are changing. Intuitively, at a steady-state, the network is like a bathtub with water
flowing in and out at the same rate. The water is still flowing, and the reactions are still proceeding,
but their relative rates mean that the water level, or the concentrations, remain unchanged. This
establishes two additional definitions:

Definition 2. A steady-state ideal is an ideal generated by the steady-state equations of a reaction
network, or the ideal

I = ⟨f⟩ = ⟨fA, fB , fC , . . . ⟩ ⊆ R[x]

Definition 3. A steady-state variety is the variety of a steady-state ideal I = ⟨f⟩ or the set

V (I) = {x ∈ Rs|f(x) = 0},

where s is the number of species in the reaction network.

When looking at steady-states with useful biological meaning, we disregard those with non-
positive concentrations, leading to another definition:

Definition 4. A positive steady-state variety is the smallest variety containing the intersection of
V (I) with the interior of the positive orthant of Rs.

Example 1. Consider the reaction network

B 2B

A + B A

κ1

κ2

The steady-state equations are then given by

fA = 0
fB = κ1xB − κ2xAxB

When solving for the variety we get κ1xB − κ2xAxB = 0, factoring to xB(κ1 − κ2xA) = 0 as the
equation defining the steady-state variety. Thus xB = 0 and xA = κ1

κ2
are the two components
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of the variety. Only xA = κ1
κ2

is in our positive steady-state variety since it is a vertical line that
intersects the interior of the positive orthant. The line xB = 0 is not included since the x-axis does
not intersect the interior of the positive orthant. To illustrate, setting k1 = 1, k2 = 2, we obtain the
graph:

The entire line xA = 1
2 is included in the positive steady-state variety, even though it contains

points with non-positive concentrations, since it is the smallest variety containing the intersection
of the steady-state variety with the positive orthant.

3 Introduction to Euclidean Distance Degree (EDD)
The Euclidean Distance degree of a variety was first defined in [3], and measures the algebraic
complexity of solving the nearest-point problem. In other words, if we have some variety V ⊆ Rn

and we pick some generic point u, the EDD describes how difficult it is to calculate the point x ∈ V
with the minimal Euclidean distance to u. Before examining the Euclidean Distance Degree in
detail, we introduce some notation used in this paper:

• V will denote a variety

• I will denote an ideal

• Jf (x) will denote the Jacobian matrix of f with respect to the variables x

• r will denote the maximal rank of a Jacobian matrix

• Tx will denote the tangent space of a curve at a the point x

The Euclidean Distance Degree of a variety builds upon a foundational understanding of several
topics. We will examine these topics individually, providing both an intuitive explanation and
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mathematical definitions for each, before finally defining Euclidean Distance Degree. The first
foundational concept is the singular point. In the context of curves in the plane, singular points may
be thought of as cusps and points of self-intersection. Although our definition allows for abstraction
beyond this specific context, the visual intuition will be foundational later when rigorously defining
singular points and their relationship to tangent lines.

Given an ideal I and an arbitrary complex polynomial fi ∈ C[x1, . . . , xn], let us compile all
potential fi to a single map f :

f : Cn → Cs; f(x) = (f1(x), f2(x), . . . , fs(x))
Note, x is any combination of the variables (x1, . . . , xn). Thus, given n variable inputs, our

new function f outputs the s - dimensional vector composed of our respective function outputs.
Examine the Jacobian matrix of f constructed below:

Jf (x) =


f1(x)
f2(x)

...
fs(x)

 =


∂f1(x)

∂x1
. . . ∂f1(x)

∂xn... . . . ...
∂fs(x)

∂x1
. . . ∂fs(x)

∂xn


From this we can formulate the following definition:

Definition 5. Let X be a variety. A point x ∈ X is regular if the rank of Jf (x) is maximal.
Otherwise, the point is singular.

A non-maximal rank in the Jacobian of f indicates linear dependence between rows or columns.
This builds upon our intuition from earlier which suggested that a singular point x would have a
poorly defined tangent, or more rigorously, result in a non maximal rank of Jf (x). Checking linear
dependence between columns and rows can be accomplished by comparing the ratios of columns
to one another. Through algebraic manipulation, this corresponds to checking the r × r minors of
the matrix where r is the generic rank of Jf . If the generic rank of the Jacobian is maximal, the
majority of points x ∈ X are regular; that is, the rank of Jf (x) is maximal for all x ∈ X except
for points in a set of Lebesgue measure zero. For these problematic points, the rank of Jf (x) will
be non-maximal. If the r × r minors are all zero for some point x, then the rank of the Jacobian
evaluated at x is strictly less than r, meaning that x is a singular point.

Now that we have defined singular points and found a way to identify them, we may compile
them into a single mathematical object.

Definition 6. The singular locus of an ideal I is the collection of all singular points in V (I) and
will be denoted as Xsing. The singular locus is the variety of the ideal

Ising = (f1, f2, . . . , fs, {r × r minors of Jf}).

In other words, our singular locus is defined as the variety of the ideal generated not only by
our polynomial set, but also by every r × r minor, thereby restricting the variety to contain only
the singular points of the curve. Our singular locus, in turn, helps us define something called the
tangent space of a function at a point.

Proposition 7. When fi ∈ R[xi, . . . , xn]. The tangent space Tx(X \Xsing) is given by the kernel
of Jf (x)

Tx(X \Xsing) = kerJf (x)
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More specifically, since the Jacobian matrix of f is composed of gradients, this matrix is defined
by the its rows of orthogonal vectors to f . Thus, the kernel of this matrix may be interpreted as the
matrix whose column vectors lie perpendicular to each respective gradient. From the orthogonal
properties of a gradient, it follows that this matrix is the matrix whose columns are tangent to f .

With the background knowledge of singular points and the tangent space in place, we can finally
define the Euclidean Distance Degree of a variety.
Definition 8. For a complex algebraic set X, the Euclidean Distance Degree with respect to a
generic point u is the cardinality of the solution set to

x ̸∈ Xsing (x− u) ⊥ TxX

This definition captures the property that Euclidean distance is minimized when the vector from
u to x is perpendicular to the tangent space at x. Finding the solutions to this system gives the set
of non-singular points x ∈ X which are critical points of the derivative of the distance function. In
turn, these are points on the variety where distance to u is potentially minimized. We can study
the ideal containing the critical points as well, but to understand its definition we need another
tool.
Definition 9. For ideals I, J ⊆ R, the saturation of I by J is

I : J∞ = {g ∈ R : gJm ⊆ I, m ≥ 0} .

The technique of saturation allows us to manipulate ideals and their varieties in the following
manner:
Proposition 10. For ideals I and J and their respective varieties V and Z, the smallest variety
containing the set V \Z is the variety of I : J∞.

So, saturating lets us “remove” components from a variety without inadvertently producing a
set that is not a variety. Now, we return to the definition of a critical ideal.
Proposition 11. Given a point u, let

IT = (f1, . . . , fs{(c + 1)× (c + 1) minors of J ′
f})

IXsing
= (f1, . . . , fs, {c× c minors of Jf})

Then, the smallest variety containing the set of solutions S to the equation

x ̸∈ Xsing (x− u) ⊥ TxX

is given by
S = V(IT : X∞

sing)
The ideal (IT : X∞

sing) is the critical ideal of I and its zero locus is the set of critical points [4].

Using saturation here allows us to remove singular points from the set of critical points, and only
consider critical points with well-defined tangent spaces. In the context of the EDD, this means
we discard potential closest points which are singular. However, depending on the properties of
I, we might calculate different singular ideals. In particular, components generating I which have
multiplicity can falsely indicate a singular point where, for example, a cusp or self-intersection does
not actually occur. This will result in a falsely low EDD and lost information about potential
closest points. Connecting back to reaction networks, we have defined the positive steady-state in
terms of the variety thus far, but we can also consider the ideal that generates that variety.
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Definition 12. Let I be an ideal of the ring R. The radical ideal, denoted
√

I, is defined as
√

I = {r ∈ R|rn ∈ I for some n ∈ N}.

Considering the radical of I eliminates the multiplicity of components, and improves the EDD
calculation.

Example 2. Consider the following network:

A 2B

2B A + B

κ1

κ2

The steady-state equations are

fA = −κ1xA + κ2x2
B , fB = 2κ1xA − κ2x2

B

The zero sets of these equations are two distinct upward-opening parabolas, and thus the intersection
of these zero sets, which is precisely the steady-state variety, is the origin. However, the multiplicity
of xB in the steady-state equations means that the origin is counted a singular point, and we discard
it when calculating the EDD using the ideal I = ⟨xA, x2

B⟩, getting a value of 0. But, when picking
a random point u and solving for the closest point in the variety, there is clearly one solution.
Looking at the radical ideal

√
I = ⟨xA, xB⟩ instead gives the proper EDD of 1.

Using the radical ideal, we can then consider only the components of the variety that intersect
the positive orthant.

Definition 13. The positive radical ideal is the set of all polynomials that vanish when evaluated
at the positive steady-states.

This definition gives a group-theoretic perspective on the positive steady-state variety.

Example 3. Returning to the reaction in Example 1, we have the steady-state equations

f =
{

fA = 0
fB = κ1xB − κ2xAxB

}
Our positive steady-state is then xA = k1

k2 . Thus, < xA − κ1
κ2

> is the positive radical ideal because
it vanishes over the positive steady-state.

In practice, it is difficult to compute the positive radical ideal; in this report, the positive
steady-state varieties were calculated by hand.

4 The Evolute
Over Rs, the EDD is constant when examining the total number of complex solutions to the relevant
system of equations. However, the number of real solutions may vary based on our choice of the
generic point u. In applications of network theory, only real solutions have useful meaning, and so
we would like a method to determine the number of real solutions to the EDD system for some
generic point u. As defined in [3], the ED discriminant divides Rs into connected regions over which
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the number of real critical points is constant. For plane curves, this allows us to determine the
number of real solutions to the system for large regions of the plane rather than individual points.
In particular, the Euclidean distance discriminant is the evolute of the variety; this will be made
clear by building up from the most common definition of the evolute.

Definition 14. The evolute of a curve is the locus of all of its centers of curvature. More specifically,
given an arbitrary point on the curve, there exists a circle of non-zero radius with equal curvature
at that point. The set of every circle’s center is the evolute.

However, it’s important to note that while the circle of equal curvature defines the evolute, it
does not define curvature. Rather, given a parametrized curve, we craft the circle of equivalent
curvature using the normal vector to the curve at our specified point. This provides some intuition
for an equivalent definition of the evolute:

Definition 15. The evolute of a curve is the envelope of normal vectors to the curve. Equally,
given the family of normal vectors to our curve at various points, the envelope is tangent to each
normal exactly once.

From this new definition, some properties of the evolute are revealed. Namely, why the evolute
divides the plane into areas with a constant number of real solutions. Through our construction of
the evolute as the envelope of normals we can think of the ED Degree as accounting for the number
of times the normal vectors span the interior of our evolute.

For example, the EDD of a parabola is 3. For points above the evolute of the parabola, the
number of real solutions is 3. Points below the evolute have exactly one real solution, and points on
the evolute have two real solutions where a pair of solutions coincide. Below shows various points
u and their solutions.
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5 Mixed Volumes
The EDD is more difficult to compute over families of reaction networks with higher dimensions
and degrees. So, as in [5], it is useful to consider the mixed volume of a network, which provides an
upper bound for the number of positive steady-states, assuming this number is finite. To understand
when this assumption breaks down, we need an additional pair of definitions:

Definition 16. Given an m×n stiochiometric matrix N , the stoichiometric subspace is the subspace
in Rm spanned by the columns of N . In other words, the stoichiometric subspace is a vector
representation of the potential ways in which a dynamical system can evolve over time.

Definition 17. Given a chemical reaction network, a conservation law is the equation the or-
thogonal complement to the stoichiometric subspace of a network. As such, it represents all linear
combinations of elements that remain unchanged by a dynamical system.

The maximum number of positive steady-states is related to the intersection of the positive
steady-state variety and the conservation law. If this intersection is infinite, the mixed volume does
not provide a useful upper bound on the number of positive steady-states.

One network with an infinite intersection between the positive steady-state variety and the
conservation law is the following:

B 2B

A + B A

κ1

κ2

In this case, the conservation law and the positive steady-state variety are both vertical lines in
the positive quadrant. They are shown below:

xa = c where c ∈ R

xa = κ1

κ2

Thus, if c equals κ1
κ2

, the conservation law and the positive steady-state variety have infinite
overlap. Yet, while this only occurs for a single network within our specified cohort, it necessitates
precaution whenever using mixed volume as an upper bound for the number of positive steady-states
for a network. This network has mixed volume zero, but a nonempty positive steady-state variety.
It is further important that in the cases where the conservation law and the positive steady-state
variety cannot overlap, even if they are parallel, the mixed volume would still hold as an upper
bound.

6 Species Reaction Graphs
As insightful as the database [1] is for the study of chemical reaction networks, the information
must be translated to a form which can be readily used for calculations. Specifically, the data is
enclosed via files of numerical strings and is organized by the number of species and reactions. The
pairs of digits encode the edges of a species-reaction graph. Our interests lie with Table 2, which
contains genuine, at-most bimolecular reaction networks. We define these terms as follows:

Definition 18. A genuine chemical reaction network leaves no species unused. A reaction is
at-most bimolecular if every complex contains at most two elements.
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To illustrate this process more clearly, let us consider the first entry of the 2-species, 2-reaction
file.

2203032121

Let the first two entries be m, n. They represent the number of reactions and species, respec-
tively. Hence, we know the first two digits will be the same for every entry in the file.

As seen in our example, the string representing the actual network 03032121 is composed of
the set {0, 1, 2, 3}, call this H. For the hi ∈ H, if 0 ≤ hi ≤ m − 1, then hi represents a unique
reaction. The set of reactions will be referred to as R, and thus for our example R = {0, 1} where
the reactions are labeled sequentially. Likewise, the numbers corresponding to the species will be
composed of all integers hi ∈ H such that m ≤ hi ≤ n. We let the set of species be S, so for this
string we have S = {2, 3} where 2 corresponds to species A and 3 to species B.

The strings are constructed such that after the initial entries of m and n, the integers are paired
to create indices. Each index is composed of one element of R and one from S, providing a species
and reaction. From here, the ordering of the pair indicates if the species is in the product or reactant
complex of the reaction. If the species integer is listed first it will reside in the reactant complex,
and if the species number is listed second then it resides in the product complex.

We can then create diagrams for each ordered pair, pointing from the product complex to the
reactant complex, with the arrow being marked by its designated reaction number from the set R.
Either the reactant or product complex will contain the species indicated by its element from S,
but that doesn’t necessarily mean the “empty” complex is zero, as explained later.

Returning to the example above, all of our indices can be listed as ordered pairs, shown below.
Let r0 correspond to the reaction indexed by 0 in our data, and similarly for r1.

(0, 3) : B

(0, 3) : B

(2, 1) : A

(2, 1) : A

r0

r0

r1

r1

Once the individual indices are transformed into these structures, we can “sum” the product and
reactant complexes, respectively, for each individual reaction. Using the example above, we “add”
the r0 arrows together to create 0 2B.

r0 Similarly, we do the same for the r1 arrows, giving
2A 0.

r1 This same process would be used if the product complex of any of these weren’t
zero, “adding” the non-zero complexes together. This example just happens to be one with trivial
complexes.

Finally, to create the chemical reaction network, we combine the unique reactions into one,
making sure to append the reaction rates, denoted as κi. For this example, we have

0 2B

2A 0.

κ1

κ2

While running calculations in our software, these were written as a list {0 → 2B, 2A → 0}
rather than a network, for practical reasons. The specific code is included in the appendix.
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7 Main Results
In this paper, we analyze and classify the positive steady-state varieties of all 210 genuine, at-most
bimolecular, 2-species, 2-reaction networks. For the remainder of this section, “chemical reaction
network” or “network” will refer to 2-species, 2-reaction networks satisfying these properties. An
additional property of reaction networks is useful in their classification:

Definition 19. The set of all unique species present in a complex is called the support of that
complex. In particular, we consider the supports of reactant complexes.

Among all 210 chemical reaction networks, there are eleven possible shapes of the steady-state
variety, not accounting for horizontal versus vertical orientation; this orientation corresponds to the
arbitrary labeling of the species and the corresponding axes. We give an example of each class.

7.1 Empty variety
First, we examine the class of networks with an empty steady-state variety (and therefore and
empty positive steady-state variety). For these networks, the system of steady-state equations has
no solutions. Consider the network

A + B 2A

0 A

κ1

κ2

and its steady-state equations

fA = κ1xAxB + κ2

fB = −κ1xAxB

We can see that this system has no solutions both geometrically and algebraically. First, the zero
set of fA here is a hyperbola contained entirely in the interiors of the second and fourth quadrants,
while the zero set of fB consists of both axes. These zero sets do not intersect, and so there are no
points that solve both equations. Alternatively, setting fA equal to zero gives xAxB = −κ2

κ1
, while

setting fB equal to zero gives xAxB = 0, which occurs if and only if one or both values are zero.
Since both of the κi are strictly positive, these equalities cannot be satisfied simultaneously, and
there are no solutions.

7.2 Origin
There are 44 networks whose steady-state variety is the single point (xA, xB) = (0, 0). Consider
the network

2B A

A A + B

κ1

κ2

and its steady-state equations

fA = κ1x2
B

fB = −2κ1x2
B + κ2xA
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Geometrically, the zero set of fA is the line xB = 0, or the xA-axis, while the zero set of fB is a
parabola intersecting the origin and opening in the positive xA direction. These curves intersect
only in the origin. Algebraically, fA gives that x2

B = 0 while fB gives that x2
B = κ2

2κ1
xA; this system

is solved only when xA = 0, which also gives xB = 0. So, the steady-state variety is the origin.
These networks all have an empty positive steady-state variety, since the origin does not intersect
the interior of the positive orthant.

7.3 Single axis
Our first foray into one-dimensional steady-state varieties is with the class of single-axis varieties.
These networks, the most numerous class, have an empty positive steady-state variety and a steady-
state variety consisting of a single coordinate hyperplane. The identity of this axis depends only
on the arbitrary labeling of species, and so the xA and xB axes are considered equivalent in this
classification. Consider the network

A + B 2A

2A A

κ1

κ2

and its steady-state equations

fA = κ1xAxB − κ2x2
A = xA(κ1xB − κ2xA)

fB = −κ1xAxB

Written in factored form, the shared factor of xA is clear. Both equations equal zero when xA = 0,
and the other factors are distinct. So, the steady-state variety is the line xA = 0, or the xB-axis.

7.4 Both axes
The next class of networks has a steady-state variety consisting of both coordinate hyperplanes.
Consider the network

A + B 2B

A + B A

κ1

κ2

and its steady-state equations

fA = −κ1xAxB

fB = κ1xAxB − κ2xAxB = xAxB(κ1 − κ2)

Both equations are constant multiples of xAxB , and thus their zero set is the union of the lines
xA = 0 and xB = 0, or the union of the xB and xA axes. While not of much interest due to
its empty positive steady-state variety, the classification of these networks is remarkably simple,
summarized in the following proposition:

Proposition 20. A network’s steady-state variety consists of both coordinate hyperplanes if and
only if both reactant complexes are A + B.
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Proof. First, suppose that the steady-state variety consists of both coordinate hyperplanes. Then,
both steady-state equations must have a shared factor of xAxB . This factor is already degree two,
the maximal degree for the steady-state equations of at-most bimolecular networks, so each equation
must be some constant (possibly zero) multiple of xAxB . This means every nontrivial monomial
term must have a factor of xAxB , and therefore both reactant complexes take the form A + B.

Now, suppose that both reactant complexes are A + B. Then, the corresponding steady-state
equations consist of monomials that are constant (possibly zero) multiples of xAxB . Any sum of
these monomials will be a constant multiple of xAxB , which equals zero if and only if at least one
variable is zero. So, the variety consists of the union of the lines xA = 0 and xB = 0, which is
precisely the pair of coordinate hyperplanes.

7.5 Line through the origin
The next class is the first we have seen whose members can, and do, exhibit nonempty positive
steady-state varieties. The following network is one such specimen:

A B

B A

κ1

κ2

Its steady-state equations are given by

fA = −κ1xA + κ2xB

fB = κ1xA − κ2xB

Note that these equations are linear multiples of each other, and so their zero sets define the same
curve. In particular, they define the line xB = κ1

κ2
xA, which is a line through the origin with positive

slope, the precise value of which depends on the rate constants. The following graph shows the
variety when κ1 = 6 and κ2 = 3:
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7.6 Parallel lines
The next—and smallest—class, with only two members, have steady-state varieties consisting of
two parallel lines, one of which is a coordinate axis. Consider the network

2B 2A

B A

κ1

κ2

and its steady-state equations

fA = 2κ1x2
B + κ2xB = xB(2κ1xB + κ2)

fB = −2κ1x2
B − κ2xB = xB(−2κ1xB − κ2)

As with the previous class, the two equations are linear multiples of each other, and so we need only
consider one. The equations equal zero when either xB = 0, or when xB = −κ2

2κ1
. So, the variety is

the union of these two parallel lines, one of which is the xA-axis. The following graph shows the
variety when κ1 = 1 and κ2 = 2:
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7.7 Plus sign
The next class of networks have varieties in a plus-sign shape, where one line is a coordinate axis
and the other is a perpendicular non-axis line. Consider the following network:

B 2B

A + B A

κ1

κ2

and its steady-state equations

fA = 0
fB = κ1xB − κ2xAxB = xB(κ1 − κ2xA)

In this network, one steady-state equation is the zero polynomial, so its zero set is the entire plane,
meaning fA places no restrictions on the variety. So, the variety is defined entirely by fB , which
equals zero when either xB = 0, or when xA = κ1

κ2
. So, the variety is the union of these two

perpendicular lines, one of which is the xA-axis. When κ1 = 2 and κ2 = 1, the variety looks as
follows:
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7.8 Rotated X
Continuing on to another class whose variety consists of two intersecting straight lines, we next
have the shape we call a “rotated X.” These varieties look like one coordinate axis and one non-
perpendicular line through the origin. The following network is in this class:

A + B 2B

2B A + B

κ1

κ2

Its steady-state equations are given by

fA = −κ1xAxB + κ2x2
B = xB(−κ1xA + κ2xB)

fB = κ1xAxB − κ2x2
B = xB(κ1xA − κ2xB)

Once again, these equations are linear multiples of each other. After factoring, we see that they
both equal zero when either xB = 0, or when xB = κ1

κ2
xA. So, the steady-state variety is the union

of these two lines. One is the xA-axis, and the other is a line with positive slope through the origin.
Letting κ1 = 1.5 and κ2 = 3, the variety looks as follows:
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7.9 X-Shape
The final class made up only of straight lines consists of an X-shape centered at the origin, where
neither line is a coordinate axis. Consider the network

2A 2B

2B A + B

κ1

κ2

and its steady-state equations

fA = −2κ1x2
A + κ2x2

B

fB = 2κ1x2
A − κ2x2

B

As in the previous two examples, these equations are linear multiples of each other. They equal
zero when x2

B = 2κ1
κ2

x2
A. Taking the square root yields the equation xB = ±

√
2κ1
κ2

xA, which defines
two lines with opposite slope through the origin. The following graph shows this variety when
κ1 = κ2 = 1:
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7.10 Parabola
At long last, we depart the world of straight lines for the last two classes of networks, the first
of which forms parabolic varieties. All of these networks have nonempty positive steady-state
varieties, which equal their steady-state varieties. Similar to the single axes, whether the parabola
opens upward or rightward depends only on the arbitrary relabeling of the species, so these two
cases are considered equivalent. As an example, consider

A 2B

2B A

κ1

κ2

Its steady-state equations are given by

fA = −κ1xA + κ2x2
B

fB = 2κ1xA − 2κ2x2
B

Since these equations are linear multiples of each other, both equations equal zero when xA = κ2
κ1

x2
B .

So, the steady-state variety takes the form of a parabola at the origin opening in the positive xA

direction. Letting k1 = 2 and k2 = 1, the variety looks as follows:
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7.11 Hyperbola
The final class is also a degree two conic, taking the form of a hyperbola contained in the first and
third quadrants. As with the parabola, all of these networks have a nonempty positive steady-state
variety which equals their steady-state variety. Consider the network

A + B 0

0 A + B

κ1

κ2

and its steady-state equations

fA = −κ1xAxB + κ2

fB = −κ1xAxB + κ2

Since fA = fB , the variety of one gives the solution to both the equations. Thus, the variety is
given by xAxB = κ2

κ1
which defines a hyperbola. When k1 = 2 and k2 = 1 the variety appears as

follows:
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7.12 Classification Theorems
We have now seen an example of every possible steady-state variety. Considering now only nonempty
positive steady-state varieties, there are four classes: horizontal or vertical lines, lines through the
origin, parabolas, and hyperbolas. We give classifications of all networks producing these varieties.

Theorem 7.1. Given a chemical reaction network, the positive steady-state will be non-axis hori-
zontal or vertical line if and only if the following criteria are true:

1. The columns of the stoichiometric matrix are negative multiples of one another

2. One reactant complex is A + B and the other is unimolecular

Remark. Before proving this theorem, we note that the second criterion, phrased here in terms
of the stoichiometric matrix, can also be described with the notion of T-alternating subnetworks
described in [5]. Through this lens, we instead require that, when viewing the behavior of each
species individually, the network is 1-alternating.

Proof. (⇒)
Suppose we have an arbitrary network whose PSSV is a non-axis horizontal or vertical line. There-
fore, the network’s simplified variety will be V (bxa − a) where a, b ∈ R\{0} and xa is an arbitrary
variable representing one of our two species.

Thus, since the positive steady-state variety is a component of the steady-state variety, the
positive steady-state equation will be a factor of the steady-state equation. As such, our steady-
state equation will a product of (bxa − a) and a term whose degree is limited by the network’s
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bimolecularity.

(bxa − a) ∗ (Factor of degree 1 or 0) = (Entire steady-state equation)

Should our zero degree factor be equal to zero, our PSSV will be empty, contradicting our assump-
tion that it is a line. Further, should our zero degree factor be a constant other than one, our PSSV
will remain unchanged while the equation will be scaled by a constant, contradicting a and b being
represented in their simplest form. Therefore, as defined, should our PSS equation be non-trivial
factor of the steady-state equation, the degree of the other factor is one. Thus, our variety will
be (bxa − a) ∗ h1 where h1 is degree one. However, note that for all two-reaction networks, the
corresponding steady-state equations will have at most two terms. Therefore, our degree one factor
is a monomial, leaving us with the following potential steady-state equations:

(bxa − a)
(bxa − a) ∗ (xa)
(bxa − a) ∗ (xb)

The logic applied to yield these steady-state equations also applies to our second set of equations.
Therefore, we must only determine the potential pairings between this list of equations and itself.
Following from the assumption of mass action kinetics, the terms of steady-state equations corre-
spond to the reactant complexes of a network. Since each term has a unique product of variable,
these three equations correspond to unique networks. Thus, the only possible steady-state equations
are the following:

f = (bxa − a) , g = (dxa − c)
f = (bxa − a) ∗ (xa) , g = (dxa − c) ∗ (xa)
f = (bxa − a) ∗ (xb) , g = (dxa − c) ∗ (xb)

Having a PSSV necessitates that the factors corresponding to the variety are multiples of one
another. Thus, the binomial factors, and therefore each pair of equations, are multiples. This
corresponds to the rows of the network’s stoichiometric matrix also being multiples. Further,
following from our construction of a positive line’s simplified equation, the terms of each binomial
have opposite parity. This corresponds to the columns of the stoichiometric matrix having opposite
parity. In combination, these two principles prove our first criterion. For all pairs of equations above,
the columns of the corresponding stoichiometric matrix are negative multiples. This additional
restriction necessitates that the first two equations correspond to non-genuine chemical reaction
networks: A ←→ 0 and 2A ←→ A, respectively. Thus, the only form the steady-state equations
may take are the following:

f = (bxa − a) ∗ (xb) , g = (dxa − c) ∗ (xb)

Further, as demonstrated in the above example, these equations are derived from a network
with one support of A + B and another uni-molecular support. This proves our second criterion
and the forwards direction of the proof.

(⇐) Given a chemical reaction network, suppose the columns of the corresponding stoichiomet-
ric matrix are negative multiples of one another, and one support is A + B while the other is
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unimolecular. Then the PSSV is a non-axis horizontal or vertical line. Take the general form of a
network as shown below:

α0A + β0B → α1A + β1B

α2A + β2B → α3A + β3B

Let us manipulate this equation to align with our second assumption. WLOG, allow our second
equation to have a the unimolecular reactant complex A.

A + B →α1A + β1B

A→α3A + β3B

This yields the general steady-state equations shown below. Manipulation according to our first
assumption finding the variety yields the following equations of lines for κ1, κ2 ∈ R\{0}:

fA = (α1 − 1)κ1xAxB + (α3 − 1)κ2xA

fB = (β1 − 1)κ1xAxB + (β3)κ2xA

fA = (α1 − 1)κ1xAxB + (1− α1)κ2xA

⇒ xA = 0, xB = κ2

κ1

fB = (−β3)κ1xAxB + (β3)κ2xA

⇒ xA = 0, xB = κ2

κ1

Theorem 7.2. Given a chemical reaction network, the positive steady-state variety will be a line
through the origin if and only if the following hold:

1. The columns of the stoichiometric matrix are negative multiples of each other

2. The two reactant complexes have the same number of molecules

3. The supports of the reactant complexes are nonempty and distinct (not necessarily disjoint).

Proof. (⇒) Suppose we have a network whose positive steady-state variety is a line through the
origin. For this to occur, the line must have positive slope. Since the network is at most bimolecular,
its steady-state equations will have degree at most two. Without loss of generality, there are three
possible forms of the equation defining a steady-state variety containing the necessary line:

xB = c · xA ⇒ xB − c · xA = 0 (1)

x2
B = ·x2

A ⇒ (xB +
√

c · xA)(xB −
√

c · xA) = 0 (2)
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xAxB = c · x2
A ⇒ xA(xB − c · xA) = 0 (3)

for some positive constant c. The equation defining the steady-state variety must be a shared factor
of the two steady-state equations. In the case of (2) and (3), the shared factor is already degree
two. By bimolecularity, the steady-state equations are constant multiples of the same equation,
and therefore constant multiples of each other. If the steady-state variety is defined by equation
(1), then the steady-state equations are either (1) times a constant or (1) times a single variable.
The monomial terms are defined by a fixed pair of reactant complexes, so they must be the same
for both steady-state equations, giving that any variable factor must be shared. If such a factor
exists, we simply have (3). Otherwise, the steady-state equations are linear multiples of each other.

The individual steady-state equations must therefore take on these same three forms. In each
case, there is one positive and one negative term; this is necessary for the line’s slope to be positive.
By definition, the sign of the steady-state coefficients corresponds to the net change of a species.
Here, the signs indicate that if a given species is increasing in one reaction, it is decreasing in the
other. Therefore, each row of the stoichiometric matrix will have one positive and one negative
term if they are nonzero, and the network satisfies (1 ). Note also that in all three equations the
degree of every variable term is equal, necessary for defining a line, meaning that the number of
reactant molecules is equal in both reactions and the network satisfies (2 ).

Finally, we observe that in all three equations, there is at least one variable that appears in
exactly one monomial term. This corresponds to at least one species that appears in exactly one
reactant complex, indicating distinct supports of the reactant complexes. Additionally, all three are
binomials, so no reactant complex has an empty support, and the corresponding network satisfies
(3 ).

(⇐) Now, suppose we have a nontrivial network satisfying the above three conditions. As a
consequence of (1 ), the rows of the stoichiometric matrix are multiples of each other as well, and
so the steady-state equations are linear multiples of each other with at least one being nonzero. So,
to understand the variety we need only examine one equation. Without loss of generality, consider
a nonzero fB in general form:

fB = κ1(β1 − β0)xα0
A xβ0

B + κ2(β3 − β2)xα2
A xβ2

B .

By (3 ), we know at least one reactant appears in exactly one reactant complex, meaning that at
least one of the reactant coefficients α0, β0, α2, and β2 is 0. Suppose without loss of generality that
β0 = 0; note that if one of the αi were zero instead, we could rewrite fB as a constant multiple
of fA so that the αi appeared in the coefficients. Then, β1 − β0 = β1 is positive, since we assume
fB ̸= 0 and (1 ) gives that one coefficient being zero forces both to be zero. So, by (1 ) again, we
have β3 − β2 is negative. We can then rewrite the equation as

κ1β1xα0
A = κ2(β2 − β3)xα2

A xβ2
B ,

where all the coefficients are positive. Since β0 = 0, we must have α0 ̸= 0, as we assume there are
no empty reactant complex supports. By (3 ), β2 ̸= 0 as well; if it were zero, the reactant complex’s
supports would not be distinct. So, the quantity β2 − β0 = β2 is positive. Furthermore, (2 ) gives
that α0 + β0 = α2 + β2. We can rearrange this equation to be α0 − α2 = β2 − β0 = β2, showing
that α0 − α2 is positive. Armed with this knowledge, we return to our equation, and divide:

κ1β1
xα0

A

xα2
A

= κ2(β2 − β3)xβ2
B .
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In general, it is inadvisable to divide by variables, as this results in lost information about
solutions to the equation. However, in this case, if we were to cancel a common factor of xA

from both terms, it would correspond to eliminating a coordinate hyperplane from the steady-state
variety. These hyperplanes are not a part of the positive steady-state variety and are therefore
irrelevant. So, simplifying gives

xβ2
B = κ1β1

κ2(β2 − β3)xα0−α2
A .

Note that β2 − β3 is nonzero, since we assumed fB ̸= 0. So, all coefficients and exponents in this
equation are positive. We also have that 2 ≥ α0−α2 = β2−β0 > 0 by (2 ) and by bimolecularity, so
the exponents are equal and either 1 or 2. In both cases, the portion of the variety that intersects
the interior of the positive orthant is a line through the origin with positive slope, which is the
desired positive steady-state variety.

Theorem 7.3. Given a chemical reaction network, the positive steady-state variety will be a
parabola if and only if the following hold:

1. One reactant complex is bimolecular and the other is monomolecular

2. The supports of the reactant complexes are disjoint

3. The columns of the stoichiometric matrix are negative linear multiples of each other

Proof. (⇒) Given the positive steady-state variety is V (y − kx2), where k ∈ R is positive, let x, y
represent the variables xA, xB under no prescribed choice. Since V (y−kx2) comes from the 2-species
network G, then V (y − kx2) = V (fA) ∩ V (fB). We know G is at-most-bimolecular, implying both
deg(fA) and deg(fB) cannot be greater than 2. Then, we have

fA = c1(y − kx2)
fB = c2(y − kx2)

where c1 and c2 are constants and not both zero.
By definition of the steady-state equations, the monomials in fA and fB correspond to the

reactant complexes of G. Since these are exactly y and x2, it directly implies G must have a
bimolecular complex and a monomolecular complex. Further, these complexes necessarily have
disjoint supports, proving conditions (1), (2).

To prove condition (3), we’ll examine two cases, the first of which being exactly one of c1 or c2 is
zero, and the other being neither are zero. If exactly one of c1 or c2 is zero, then the stoichiometric
matrix N has a row of zeros and hence has determinant zero. Otherwise, when neither c1 nor c2 is
zero, then fB = c2

c1
fA. If

fA = ak1y − bk2x2

fB = ck1y − dk2x2

where sign(a) = sign(b) and sign(c) = sign(d) then the equation fB = c2
c1

fA implies c = c2
c1

a and
d = c2

c1
b. Thus,

det N = det
(

a −b
c −d

)
= −ad + bc = −a

(
c2

c1
b

)
+ b

(
c2

c1
a

)
= 0.
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Since det N = 0, then the columns of N are multiples of each other. Further, this multiple
must be negative because of the sign conditions sign(a) = sign(b) and sign(c) = sign(d). This proves
condition (3).

(⇐) Given that the reactant complexes are disjoint, and that there’s a term with degree two
and another of degree one, we can conclude the PSSV will be of the form V (y−kx2). We also know
that the columns of the stoichiometric matrix are negative linear multiples by some real number
−c. Thus,

V (fA) ∩ V (fB) = V (y − kx2)
fA = k1ay − k2bx2

fA = −cfB

⇒ fB = −c
(
k1ay − k2bx2)

So, the PSSV must be a parabola, as desired.

Theorem 7.4. Given any chemical reaction network, the positive steady-state variety will be a
hyperbola if and only if all of the following hold:

1. fA = fB, or one of fA, fB equal 0

2. The reactant complexes are A + B and 0

3. The columns of the stoichiometric matrix are negative linear multiples of each other.

Proof. (⇒)
Assume the positive steady-state variety is of the form of a hyperbola. Specifically,

V (xAxB − c) = V (fA, fB) = V (fA) ∩ V (fB)

where c ∈ R+. Note that the solved equation xAxB = c must be a shared factor of both steady-state
equations fA and fB . Following from this, xAxB − c is not a factor of a higher degree reducible
polynomial nor a factor of a constant multiple, where the constant is greater than 1, because the
chemical reaction network is at most bi-molecular. Furthermore, the equations must take the form:

fA = κ1(α1 − α0)xAxB + κ2α3

fB = κ1(β1 − β0)xAxB + κ2β3

such that the quantities α1 − α0 and β1 − β0 must be 0 or ±1 proving (2). To prove (1) note that
solving this equation when (α1 − α0), (β1 − β0) are not equal to 0 gives:

xAxB = −κ2α3

κ1(α1 − α0)

xAxB = −κ2β3

κ1(β1 − β0)

where −α3
(α1−α0) , −β3

(β1−β0) > 0.
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If the variety is to be a hyperbola then the intersection of the solution for fA and fB must also
be a hyperbola which leads to the solution:

xAxB = −κ2α3

κ1(α1 − α0) = −κ2β3

κ1(β1 − β0)

fA ̸= −fB because the reactant complex 0 cannot lose any species from a reaction. Thus α1−α0 =
β1 − β0 = ±1 and α3 = β3 when fA and fB are non-zero. Similarly, WOLOG, if α1 − α0 = 0,
then α3 = 0 so that fA = 0. If α3 were not equal to zero, the variety would be empty. Hence, the
solution to fB is the variety.

To prove (3), note the stoichiometric matrix:

N =
[
α1 − α0 α3
β1 − β0 β3

]
WOLOG let fA be nonzero. As shown previously, d = −α3

(α1−α0) is positive. Thus −d(α1 − α0) = α3
shows that the columns are negative linear multiples of one another. For the case where fA = 0 it
is sufficient to show that 0 is a negative linear multiple of itself.
(⇐) Suppose fA = fB and the reactant complexes are A + B and 0, then the equations are of the
form:

fA = κ1(α1 − α0)xAxB + κ2α3

fB = κ1(β1 − β0)xAxB + κ2β3

where α1 − α0 = β1 − β0 and α3 = β3, thus the solution to both equations is xAxB = −κ2α3
κ1(α1−α0)

which is the equation of a hyperbola. Similarly, if one of the equations, say for example fA = 0,
then the solution to the other equation fB also takes the form of a hyperbola.

8 Network Classification Tables
The following tables give the number of networks exhibiting each type of steady-state and positive
steady-state variety.

8.1 2-Species, 2-Reaction Networks

Table 1: Networks with nonempty positive steady-state variety
PSSV # networks # with SSV=PSSV SSV (when distinct)

Line through origin 7 2 3 X, 2 rotated X
Horiz./vert. line 3 0 plus sign

Parabola 5 5 –
Hyperbola 3 3 –

Total 18 10 –
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Table 2: Networks with empty positive steady-state variety
SSV # networks

Origin 44
Single-axis 76
Both axes 6

Line through origin 3
Horiz./vert. parallel lines 2

Plus sign 1
Rotated X 5

Empty 55
Total 192

Our data in full detail is available in the attached spreadsheet.

8.2 1-Species Networks
Although not explored earlier in this paper, we also examined all 63 genuine at-most bimolecular
one-species networks with at most six reactions. We disregard the one-reaction networks; with only
one reaction, the steady-state equation will be a monomial, and so either has an empty steady-state
variety or a steady-state variety of the point zero. In either case, the positive steady-state variety is
empty, and so we begin with two-reaction networks. When working with one species, the varieties
are subsets of the number line R. In all cases, when the positive steady-state variety is nonempty, it
consists of a single point. Interestingly, in the three- and four-reaction networks, there are positive
steady-state varieties whose existence depends upon the values of the rate constants.

Table 3: 1-species 2-reaction networks
Property # networks

Empty SSV 1
One-point SSV 6
Two-point SSV 8

Total 15
Non-empty PSSV 8

Table 4: 1-species 3-reaction networks
Property # networks

One-point SSV 4
Two-point SSV 16

Total 20
Non-empty PSSV 18

Rate-dependent PSSV 4
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Table 5: 1-species 4-reaction networks
Property # networks

One-point SSV 1
Two-point SSV 14

Total 15
Non-empty PSSV 15

Rate-dependent PSSV 3

For the five- and six-reaction cases, all networks have two-point steady-state varieties and
nonempty, non-rate-dependent positive steady-state varieties. We now give an example of a rate-
dependent positive steady-state variety.

Example 4. Consider the network

A 2A

A 0

2A A

κ1

κ2

κ3

and its steady-state equation

fA = κ1xA − κ2xA − κ3x2
A = xA(κ1 − κ2 − κ3xA)

This equals zero when either xA = 0, or when xA = κ1−κ2
κ3

. The point xA = 0 will never be in the
positive steady-state variety, and we disregard it; the other point exhibits rate-dependence. All the
κi are positive, so κ1−κ2

κ3
is positive if and only if κ1 > κ2; otherwise, the value is zero or negative,

and the point is not in the interior of the positive orthant. So, this network has a nonempty positive
steady-state variety if and only if κ1 > κ2.
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Kernel: SageMath 10.0

In [0]:

In [0]:

In [0]:

#This is a compilation of the functions and procedures used for all 
calculations. 
#Some of these use the SageMath 10.0 kernel while others used 
Macaulay2.

#How we studied the original 25 networks: 

loadPackage "ReactionNetworks"

rxnInfo = G -> (
    RR1=createRing(G,QQ);
    f1= subRandomReactionRates G;
    S1=QQ[G.ConcentrationRates];
    f1=apply(f1,q->sub(q,S1));
    I1=ideal f1;
    print G;
    print(concatenate{"degree: ", toString(degree I1)});
    print(concatenate{"dimension: ", toString(dim I1)});
    print(concatenate{"weakly reversibe? ",toString isWeaklyReversible 
G});
    print(concatenate{"deficiency: ", toString isDeficient G}) )

#Created a list of all 25 CRNs called L

for G in L do rxnInfo(G)

#Our original EDD fucntion

EDD = G -> (
    R=createRing(G,QQ); --creates a ring in the rationals in terms of 
the concentrations and rxn rates
    f=subRandomReactionRates G; --inputs rxn rates so we can calculate
    S=QQ[G.ConcentrationRates]; --makes a smaller ring where only the 
concentrations are variables
    g=apply(f,p->sub(p,S)); --puts the steady state polynomials into 
the smaler ring
    I=ideal g; --steady state ideal of G
    u={random(QQ),random(QQ)}; --random point to let us calculate the 
EDD (this is the generic point u)
    sing=I+minors(codim I, jacobian I); --singular ideal, generated by 
the steady state functions and the rxr minors of the jacobian. the 
singular locus is its variety
    M = (matrix{apply(# gens S, i->(gens S)_i-u_i)})||
(transpose(jacobian I)); --concatenates a new row x-u onto the 
jacobian
    J = saturate(I+minors((codim I)+1,M),sing);
    print(G);
    print(concatenate{"dimension and EDD: ", toString(dim J, degree 
J)}))

#Another version of this function was
  
EDDInfo = G -> (
    R=createRing(G,QQ);
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In [0]:

    h=steadyStateEquations G;
    f=subRandomReactionRates G;
    S=QQ[G.ConcentrationRates];
    g=apply(f,p->sub(p,S));
    I=ideal g;
    u={random(QQ),random(QQ)};
    sing=I+minors(codim I, jacobian I);
    M = (matrix{apply(# gens S, i->(gens S)_i-u_i)})||
(transpose(jacobian I));
    J = saturate(I+minors((codim I)+1,M),sing);
    K = saturate(I,sing);
    N = gens gb ideal h;
    print("reaction network:");
    print(G);
    print("steady-state equations:");
    print(h);
    print(concatenate{"generators of the steady state variety: ", 
toString (entries N)});
    print(concatenate{"steady-state ideal with random rates: 
",toString ideal f});
    print(concatenate{"dimension and EDD: ", toString(dim J, degree 
J)});
    print(concatenate{"singular ideal: ", toString(sing)});
    print(concatenate{"dimension of singular locus: ", toString(dim 
sing)}); --if this is -1, the singular locus is empty
    print(concatenate{"generators of the singular ideal: ", 
toString(entries gens gb sing)});
    print(concatenate{"saturation of the singular ideal in the steady-
state ideal: ", toString K}); --not sure if this is the right thing 
for the saturation
)

#For the list of 210 2S2R CRNs, created a few functions which provided 
information about the reaction networks.
#After downloading the file from the database, we created a function 
that would read it and turn it into a CRN that we could pair with a 
modified version of the original EDD function.

loadPackage "ReactionNetworks"
loadPackage "ReflexivePolytopesDB" --for matrixFromString();

file = "s2r2G.txt"
directory = "~/PRiME2023/Garcia Puente Research Group/EDD 
computations"
fn3 = concatenate(directory,"/",file)
get fn3;

codes = apply(lines get fn3, s-> flatten entries matrixFromString s)
edges = for c in codes list(t = drop(c, 2); while #t > 0 list (t_0, 
t_1) do t = drop(t,2))   
m = (codes_0)_0
n = (codes_0)_1

R = matrix table(n,m, (i,j) -> number(edges_0, e -> e == (j,i+m)) ) 
L = matrix table(n,m, (i,j) -> number(edges_0, e -> e == (i+m,j)) ) 
#Formats the edges list into of text file rows into columns of CRN 
coefficients
                            
R2 = apply (edges, f -> matrix table(n,m, (i,j) -> number(f, e -> e == 
(j,i+m)) ));
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In [0]:

In [0]:

L2 = apply (edges, f -> matrix table(n,m, (i,j) -> number(f, e -> e == 
(i+m,j)) ));

#Defined a function which turns these left and right hand side 
matrices into a list of CRNs

crnRing = QQ[A, B]
varMatrix = vars crnRing
makeCRN = (m, LHS, RHS) -> (
    myList = apply (m, i -> concatenate(toString((flatten entries 
LHS_0)_i), " --> ", toString((flatten entries RHS_0)_i)) ); --
concatenates and formats the CRNs
    myList2 = apply (m, i -> concatenate separate("[*]", myList_i)); -
-removes star
    myCRN = reactionNetwork apply(myList2, s -> replace( "0", "0A", s 
)) --changes 0 into o times a variable
    )

#Due to the limitations of our software, we had to create 4 lists 
called "Iteration" (numbered, with about 54 elements in each) to call 
the function and make lists of CRNs corresponding to the database 
file.

#An example of that is below:

Iteration = for g from 0 to 52 list makeCRN(m, varMatrix*(L2_{g}), 
varMatrix*(R2_{g}))

#Also made an all-encompasing function to use for these lists based 
off of the original EDD function defined above.

loadPackage "ReactionNetworks"

SuperEDD = G ->(
    R1 = createRing(G,QQ); 
    f=subRandomReactionRates G; 
    S=QQ[G.ConcentrationRates]; 
    g=apply(f,p->sub(p,S)); 
    I=ideal g; 
    u={random(QQ),random(QQ)};
    if codim (I) == infinity then return("codimension of I is 
infinite", G) else
    sing=I+minors(codim I, jacobian I); 
    M = (matrix{apply(# gens S, i->(gens S)_i-u_i)})||
(transpose(jacobian I)); 
    J = saturate(I+minors((codim I)+1,M),sing);
    print("network:");
    print G;
    --print("steady-state equations:");
    --print(steadyStateEquations G);
    print(concatenate{"dim(J) and EDD: ", toString(dim J, degree J)});
    print(concatenate{"dim(I): ", toString(dim I)});
    print(concatenate{"degree(I): ", toString(degree I)});
    print(concatenate{"generators of singular locus: ", toString(gens 
gb sing)});
    print(concatenate{"dimension of singular locus: ", toString(dim 
sing)});
    print
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)
                
#Example of calling it
                
for G in Iteration do SuperEDD(G)
 
#To deal with the "bad" networks, created the following function to 
tell us exactly which ones they were
               
ProblemNetworks = G -> (                         #function to pick out 
and print the problem networks!
    R=createRing(G,QQ);
    f=subRandomReactionRates G; 
    S=QQ[G.ConcentrationRates]; 
    g=apply(f,p->sub(p,S)); 
    I=ideal g;
    if codim I == infinity then print G;
    if codim I == infinity then print ""
           
)

#Example call 

for G in Iteration do ProblemNetworks G
                



All 2-Species, 2-Reaction Networks
Number of Reaction Network networks degree of  I, rad I dim of I, rad I EDD wrt I, rad I dim of sing, sing with rad I shape of SSV eqn of SS (xa=x, xb=y) positive SS variety EDD of PSSV

183 A-->0, B-->A+B (Original R22) 1,1 1,1 1,1 -1,-1 line y= k1/k2 x y=k1/k2 x 1
184 A-->B, B-->A (Original R23) 1,1 1,1 1,1 -1,-1 line y= k1/k2 x y=k1/k2 x 1

9 2A-->2B, 2B-->A+B (Original R1) 2,2 1,1 2,2 0,0 X at origin y^2=2 k1/k2 x^2 y=sqrt(2 k1/k2)x 1
80 2A-->2B, 2B-->2A (Original R6) 2,2 1,1 2,2 0,0 X at origin y^2=k1/k2 x^2 y=sqrt(k1/k2)x 1
88 2A-->A+B, 2B-->A+B (Original R7) 2,2 1,1 2,2 0,0 X at origin y^2=k1/k2 x^2 y=sqrt(k1/k2)x 1

136 A+B-->2A, 2A-->2B (Original R19) 2,2 1,1 2,2 0,0 rotated X at origin x(k1 y-2 k2 x)=0 y=2 k2/k1 x 1
144 A+B-->2B, 2B-->A+B (Original R20) 2,2 1,1 2,2 0,0 rotated X at origin y(k1 x-k2 y)=0 y=k1/k2 x 1
196 A+B-->A, A-->A+B (Original R25) 2,2 1,1 2,2 0,0 plus sign x(k2-k1 y)=0 y=k2/k1 1
120 B-->2B, A+B-->A 2,2 1,1 2,2 0,0 plus sign y(k1 - k2*x) = 0 x = k1/k2 1
152 A+B-->2B, B-->A (Original R21) 2,2 1,1 2,2 0,0 plus sign y(k1 x-k2)=0 x=k2/k1 1

16 2A-->2B, B-->A (Original R2) 2,2 1,1 3,3 0,-1 parabola y=2 k1/k2 x^2 y=2 k1/k2 x^2 3
20 2A-->A, B-->A+B (Original R3) 2,2 1,1 3,3 0,-1 parabola y=k1/k2 x^2 y=k1/k2 x^2 3
69 B-->A, 2A-->A+B (Original R4) 2,2 1,1 3,3 -1,-1 parabola y=k2/k1 x^2 y=k2/k1 x^2 3

121 2B-->0, A-->A+B (Original R10) 2,2 1,1 3,3 -1,-1 sideways parabola x=2 k1/k2 y^2 x=2 k1/k2 y^2 3
127 A-->2B, 2B-->A (Original R11) 2,2 1,1 3,3 -1,-1 sideways parabola x=k2/k1 y^2 x=k2/k1 y^2 3
112 0-->2B, A+B-->A (Original R17) 2,2 1,1 4,4 -1,-1 hyperbola xy=2 k1/k2 xy=2 k1/k2 4
188 A+B-->0, 0-->A+B (Original R15) 2,2 1,1 4,4 -1,-1 hyperbola xy=k2/k1 xy=k2/k1 4
190 A+B-->A, 0-->B (Original R24) 2,2 1,1 4,4 -1,-1 hyperbola xy=k2/k1 xy=k2/k1 4

2 2A-->2B, 2B-->0 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
4 2B-->0,  2A-->A 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
5 2A--> 0, 2B-->A 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
6 2A-->2B, 2B-->A 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0

11 2B-->A, 2A-->A+B 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
12 2A-->A, 2B-->A+B 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
79 2A-->0, 2B-->0 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
82 2B-->2A, 2A-->A 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
83 2B-->0,  2A-->A+B 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
85 2A-->B, 2B-->A 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
86 2A-->A, 2B-->B 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
87 2A-->A, 2B-->A 4,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
18 2A-->2B, B-->A+B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
22 B-->0, 2A-->0 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
23 B-->2A, 2A-->0 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
15 2A-->0, B-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
54 B-->2B, 2A-->2B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
59 B-->0, 2A-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
60 B-->2B, 2A-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
63 B-->2B, 2A-->A+B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
65 B-->A, 2A-->B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
67 B-->A, 2A-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
71 B-->A+B , 2A-->A+B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
91 B-->2A, 2A-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0

110 2B-->A, A-->A+B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
126 A-->0, 2B-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
129 A-->2B, 2B-->A+B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
175 A-->2A, 2B-->A 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0
176 A-->0, 2B-->A+B 2,1 0,0 0,1 0,-1 origin (x,y)=(0,0) empty 0

24 B-->2B, 2A-->0 2,1 0,0 0,1 -1,-1 origin (x,y)=(0,0) empty 0
25 B-->0, 2A-->2B 2,1 0,0 0,1 -1,-1 origin (x,y)=(0,0) empty 0
26 B-->2A, 2A-->2B 2,1 0,0 0,1 -1,-1 origin (x,y)=(0,0) empty 0

116 B-->2B, A-->0 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
118 B-->A, A-->A+B 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
130 A-->2B, B-->0 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
131 A-->0, B-->A 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
132 A-->2B, B-->A 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
133 A-->2B, B-->A+B 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
178 A-->0, B-->0 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
179 A-->2A, B-->2B 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
180 A-->2B, B-->2A 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
181 A-->2A, B-->2A 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
182 A-->2A, B-->A 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0
185 A-->A+B, B-->A+B 1,1 0,0 1,1 -1,-1 origin (x,y)=(0,0) empty 0

7 2B-->0, 2B-->A 2,1 1,1 0,1 1,-1 x-axis y=0 empty 0
13 2B-->A, 2B-->A+B 2,1 1,1 0,1 1,-1 x-axis y=0 empty 0
81 2B-->2A, 2B-->A 2,1 1,1 0,1 1,-1 x-axis y=0 empty 0
21 2B-->A, B-->A+B 1,1 1,1 1,1 0,-1 x-axis y=0 empty 0

123 2B-->2A, A+B-->A 1,1 1,1 1,1 0,-1 x-axis y = 0 empty 0
138 A+B-->2B, 2B-->0 1,1 1,1 1,1 0,-1 x-axis y = 0 empty 0
141 A+B-->0, 2B-->A 1,1 1,1 1,1 0,-1 x-axis y = 0 empty 0
142 A+B-->2B, 2B-->A 1,1 1,1 1,1 0,-1 x-axis y = 0 empty 0
150 A+B-->A, 2B-->A+B 1,1 1,1 1,1 0,-1 x-axis y = 0 empty 0
186 A+B-->2A, 2B-->A 1,1 1,1 1,1 0,-1 x-axis y=0 empty 0

17 2B-->0, B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
55 B-->2A, 2B-->0 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
56 B-->0, 2B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
57 B-->2A, 2B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
58 B-->2B, 2B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
61 B-->0, 2B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
62 B-->2B, 2B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
64 B-->2B, 2B-->A+B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
66 B-->A, 2B-->B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
68 B-->A, 2B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
72 B-->A+B, 2B-->A+B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
73 B-->0, B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
74 B-->2B, B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
75 B-->2B, B-->A+B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
76 B-->2A, B-->0 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
77 B-->2B, B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
78 B-->A, B-->A+B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
90 B-->2A, 2B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
92 B-->2A, B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0

124 B-->2A, A+B-->A 1,1 1,1 1,1 -1,-1 x-axis y = 0 empty 0
151 A+B-->0, B-->A 1,1 1,1 1,1 -1,-1 x-axis y = 0 empty 0
162 A+B-->2B, B-->A+B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
163 A+B-->0, B-->0 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
164 A+B-->0, B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
165 A+B-->0, B-->2B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
166 A+B-->2A, B-->0 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
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167 A+B-->2A, B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
168 A+B-->2A, B-->2B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
169 A+B-->2B, B-->0 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
170 A+B-->2B, B-->2A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
171 A+B-->2B, B-->2B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
172 A+B-->B, B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
173 A+B-->A, B-->A+B 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0
174 A+B-->A, B-->A 1,1 1,1 1,1 -1,-1 x-axis y=0 empty 0

1 2A-->2B, 2A-->0 2,1 1,1 0,1 1,-1 y-axis x=0 empty 0
3 2A-->2B, 2A-->A 2,1 1,1 0,1 1,-1 y-axis x=0 empty 0
8 2A-->2B, 2A-->A+B 2,1 1,1 0,1 1,-1 y-axis x=0 empty 0

10 2A-->A, 2A-->A+B 2,1 1,1 0,1 1,-1 y-axis x=0 empty 0
14 2A-->A, 2A-->B 2,1 1,1 0,1 1,-1 y-axis x=0 empty 0
84 2A-->0, 2A-->A+B 2,1 1,1 0,1 1,-1 y-axis x=0 empty 0

111 2A-->2B, A+B-->0 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
113 2A-->0, A+B-->A 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
114 2A-->2B, A+B-->A 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
134 A+B-->0, 2A-->0 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
135 A+B-->2B, 2A-->0 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
139 A+B-->0, 2A-->A 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
140 A+B-->2B, 2A-->A 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
145 A+B-->B, 2A-->B 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
147 A+B-->A, 2A-->B 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
148 A+B-->A, 2A-->A 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
149 A+B-->A, 2A-->A+B 1,1 1,1 1,1 0,-1 y-axis x = 0 empty 0
187 A+B-->2A, 2A-->A 1,1 1,1 1,1 0,-1 y-axis x=0 empty 0
189 A+B-->0, 2A-->A+B 1,1 1,1 1,1 0,-1 y-axis x=0 empty 0
108 2A-->2B, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x = 0 empty 0
109 2A-->A, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x = 0 empty 0
122 2A-->0, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x = 0 empty 0
125 A-->2B, 2A-->A 1,1 1,1 1,1 -1,-1 y-axis x = 0 empty 0
128 A-->2B, 2A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x = 0 empty 0
177 A-->0, 2A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
192 A-->2B, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
193 A-->0, A+B-->A 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
194 A-->2B, A+B-->A 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
195 A+B-->2B, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
200 A-->0, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
201 A-->2A, A+B-->A 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
202 A+B-->0, A-->A+B 1,1 1,1 1,1 -1,-1 y-axis x=0 empty 0
197 A+B-->2B, A+B-->0 2,2 1,1 2,2 0,0 both axes x=0, y=0 empty 0
198 A+B-->0, A+B-->A 2,2 1,1 2,2 0,0 both axes x=0, y=0 empty 0
199 A+B-->2B, A+B-->A 2,2 1,1 2,2 0,0 both axes x=0, y=0 empty 0
203 A+B-->2A, A+B-->A 2,2 1,1 2,2 0,0 both axes x=0, y=0 empty 0
204 A+B-->2A, A+B-->2B 2,2 1,1 2,2 0,0 both axes x=0, y=0 empty 0
205 A+B-->A, A+B-->B 2,2 1,1 2,2 0,0 both axes x=0, y=0 empty 0

19 0-->A, B-->A+B 1,1 1,1 1,1 -1,-1 line y=-k1/k2 empty 0
93 0-->2B, A-->A+B 1,1 1,1 1,1 -1,-1 line x=-2k1/k2 empty 0

117 B-->2B, A-->A+B (Original R9) 1,1 1,1 1,1 -1,-1 line y= -k2/k1 x empty 0
70 B-->A, 2B-->A+B (Original R5) 2,2 1,1 2,2 0,-1 horizontal parallel lines y(k1+k2 y)=0 empty 0
89 2B-->2A, B-->A (Original R8) 2,2 1,1 2,2 -1,-1 horizontal parallel lines y(k1+2 k2 y)=0 empty 0

191 A+B-->2A, B-->A (Original R16) 2,2 1,1 2,2 0,0 plus sign y(k1+k2 x)=0 empty 0
115 2B-->0, A+B-->A (Original R18) 2,2 1,1 2,2 0,0 rotated X at origin y(2 k1 y+k2 x)=0 empty 0
119 B-->0, A+B-->A 2,2 1,1 2,2 0,0 rotated X at origin y=0, x = -k1/k2 empty 0
137 A+B-->2B, 2A-->2B (Original R12) 2,2 1,1 2,2 0,0 rotated X at origin x(k1 y+2 k2 x)=0 empty 0
143 A+B-->2B, 2A-->A+B (Original R13) 2,2 1,1 2,2 0,0 rotated X at origin x(k1 x+k2 y)=0 empty 0
146 A+B-->B, 2A-->A (Original R14) 2,2 1,1 2,2 0,0 rotated X at origin x(k1 x+k2 y)=0 empty 0

27 0-->2B, 2A-->0 empty empty 0
28 0-->2A, 2A-->2B empty empty 0
29 0-->2B, 2A-->2B empty empty 0
30 0-->2B, 0-->A empty empty 0
31 2A-->2B, 0-->A empty empty 0
32 0-->2B, 2A-->A empty empty 0
33 2B-->0, 0-->A empty empty 0
34 0-->2B, 2B-->A empty empty 0
35 0-->2B, 0-->A+B empty empty 0
36 2A-->2B, 0-->A+B empty empty 0
37 0-->2B, 2A-->A+B empty empty 0
38 0-->2B, 2B-->A+B empty empty 0
39 0-->B, 2A-->B empty empty 0
40 0-->B, 2A-->A empty empty 0
41 0-->A, 2A-->B empty empty 0
42 0-->A, 0-->A+B empty empty 0
43 2A-->A, 0-->A+B empty empty 0
44 0-->A, 2A-->A+B empty empty 0
45 2B-->A, 0-->A+B empty empty 0
46 0-->A, 2B-->A+B empty empty 0
47 0-->A+B, 2A-->A+B empty empty 0
48 0-->2B, B-->A empty empty 0
49 0-->2B, B-->A+B empty empty 0
50 B-->0, 0-->2A empty empty 0
51 B-->2A, 0-->2A empty empty 0
52 B-->2B, 0-->2A empty empty 0
53 B-->2A, 0-->2B empty empty 0
94 B-->0, 0-->A empty empty 0
95 B-->2B, 0-->A empty empty 0
96 B-->2B, 0-->A+B empty empty 0
97 B-->A, 0-->B empty empty 0
98 B-->A, 0-->A empty empty 0
99 B-->A, 0-->A+B empty empty 0

100 B-->A+B, 0-->A+B empty empty 0
101 2B-->2A, 0-->A empty empty 0
102 0-->2A, 2B-->A empty empty 0
103 2A-->0, 0-->A+B empty empty 0
104 0-->2A, 0-->2B empty empty 0
105 0-->A, 0-->B empty empty 0
106 0-->2A, B-->A empty empty 0
107 B-->2A, 0-->A empty empty 0



All 2-Species, 2-Reaction Networks
Number of Reaction Network networks degree of  I, rad I dim of I, rad I EDD wrt I, rad I dim of sing, sing with rad I shape of SSV eqn of SS (xa=x, xb=y) positive SS variety EDD of PSSV

153 0-->A, A-->A+B empty empty 0
154 0-->2B, A+B-->0 empty empty 0
155 0-->2A, A+B-->A empty empty 0
156 A-->2B, 0-->A empty empty 0
157 A-->2B, 0-->A+B empty empty 0
158 A+B-->0, 0-->A empty empty 0
159 A+B-->2B, 0-->A empty empty 0
160 A+B-->2B, 0-->A+B empty empty 0
161 A+B-->A, 0-->A+B empty empty 0
206 A-->0, 0-->A+B empty empty 0
207 A+B-->2B, 0-->2A empty empty 0
208 A+B-->2A, 0-->2A empty empty 0
209 A+B-->2A, 0-->A empty empty 0
210 A+B-->A, 0-->A empty empty 0

SSV color coding pssv color coding ssv vs pssv color coding classifications
empty empty same, nonempty nonempty pssv # networks #with pssv=ssv ssv when distinct
point(s) point(s) same, empty line through origin 7 2 3 X at origin, 2 rotated X at origin
axis/axes slanted line different, nonempty pssv horizontal line 1 0 plus sign
plus sign horizontal line different, empty pssv vertical line 2 0 plus sign
rotated X at origin vertical line parabola 5 5
line parabola hyperbola 3 3
horizontal parallel lines hyperbola total 18 10
X at origin 
parabola ssv for empty pssv # networks
sideways parabola origin 44
hyperbola x-axis 44

y-axis 32
both axes 6
line 3
horizontal parallel lines 2
plus sign 1
rotated X at origin 5
empty 55
total 192



All 1-Species, 2-Reaction Networks
networks mixed volume shape of variety equation wrt rxn rates EDD pos ssv shape of pssv EDD of PSSV weakly reversible? deficiency
R5: 0-->A, 0--> 2A 0 empty* N/A 0 empty 0 F 1
R6: 2A-->A, 2A-->0 0 one point x=0 0** empty 0 F 1
R15: A-->2A, A-->0 0 one point x=0 1 empty 0 F 1
R8: A-->2A, 0-->2A 1 one point x=-2 k2/k1 1 empty 0 F 1
R12: A-->2A, 0-->A 1 one point x=-k2/k1 1 empty 0 F 1
R7: A-->0, 0-->2A 1 one point x=2 k2/k1 1 x=2 k2/k1 one point 1 F 0
R11: A-->0, 0-->A 1 one point x=k2/k1 1 x=k2/k1 one point 1 T 1
R9: A-->0, 2A-->0 1 two points x=0, x=-k1/2 k2 2 empty 0 F 1
R13: A-->0, 2A-->A 1 two points x=0, x=-k1/k2 2 empty 0 F 1
R10: A-->2A, 2A-->0 1 two points x=0, x=k1/2 k2 2 x=k1/2 k2 one point 1 F 1
R14: A-->2A, 2A-->A 1 two points x=0, x=k1/k2 2 x=k1/k2 one point 1 T 0
R1: 0-->2A, 2A-->0 2 two points x=pm sqrt(k1/k2) 2 x=sqrt(k1/k2) one point 1 T 0
R2: 0-->2A, 2A-->A 2 two points x=pm sqrt(2 k1/k2) 2 x=sqrt(2 k1/k2) one point 1 F 1
R3: 0-->A, 2A-->0 2 two points x=pm sqrt(k1/2 k2) 2 x=sqrt(k1/2 k2) one point 1 F 1
R4: 0-->A, 2A-->A 2 two points x=pm sqrt(k1/k2) 2 x=sqrt(k1/k2) one point 1 F 1

*gives error message when running function because the steady state variety is empty
**x=0 is a singularity because it has multiplicity 2, so we throw it out when calculating the EDD. the EDD using the radical ideal is 1.



All 1-Species, 3-Reaction Networks
networks mixed volume shape of variety equation wrt rxn rates EDD pssv depends on rxn rates? pos ssv shape of pssv EDD of pssv weakly reversible? deficiency
R17: A-->2A, A-->0, 0-->2A 1 one point x=(-2 k3) / (k1-k2) 1 yes x=(-2 k3) / (k1-k2)   [WHEN k1<k2] one point 1 F 1
R19: A-->2A, A-->0, 0-->A 1 one point x= k3 / (k2-k1) 1 yes x=k3 / (k2-k1)  [WHEN k1<k2] one point 1 F 1
R13: A-->0, 0-->A, 0-->2A 1 one point x=(k2+2 k3) / k1 1 no x=(k2+2 k3) / k1 one point 1 F 1
R14: A-->2A, 0-->A, 0-->2A 1 one point x=-(k2+2 k3) / k1 1 no empty 0 F 1
R18: A-->2A, A-->0, 2A-->0 1 two points x=0, (k1-k2) / (2 k3) 2 yes x=(k1-k2) / (2 k3)  [WHEN k1>k2] one point 1 F 1
R20: A-->2A, A-->0, 2A-->A 1 two points x=0, (k1-k2) / k3 2 yes x=(k1-k2) / k3  [WHEN k1>k2] one point 1 F 1
R15: A-->0, 2A-->A, 2A-->0 1 two points x=0, -k1 / (k2+2 k3) 2 no empty 0 F 1
R16: A-->2A, 2A-->A, 2A-->0 1 two points x=0, k1 / (k2+2 k3) 2 no x=k1 / (k2+2 k3) one point 1 F 1
R1: 0-->2A, 2A-->A, 2A-->0 2 two points x=pm sqrt((2 k1) / (k2+2 k3)) 2 no x=sqrt((2 k1) / (k2+2 k3)) one point 1 F 1
R2: 2A-->0, 0-->A, 0-->2A 2 two points x=pm sqrt((k2+2 k3) / (2 k1)) 2 no x=sqrt((k2+2 k3) / (2 k1)) one point 1 F 1
R3: 0-->A, 2A-->A, 2A-->0 2 two points x=pm sqrt((k1) / (k2+2 k3)) 2 no x=sqrt((k1) / (k2+2 k3)) one point 1 F 1
R4: 2A-->A, 0-->A, 0-->2A 2 two points x=pm sqrt((k2+2 k3) / k1) 2 no x=sqrt((k2+2 k3) / k1) one point 1 F 1
R5: A-->0, 0-->2A, 2A-->0 2 two points x=(-k1 pm sqrt(k1^2+16 k2 k3)) / (4 k3) 2 no x=(-k1 + sqrt(k1^2+16 k2 k3)) / (4 k3) one point 1 F 1
R6: A-->2A, 0-->2A, 2A-->0 2 two points x=(k1 pm sqrt(k1^2+16 k2 k3)) / (4 k3) 2 no x=(k1 + sqrt(k1^2+16 k2 k3)) / (4 k3) one point 1 F 1
R7: A-->0, 0-->2A, 2A-->A 2 two points x=(-k1 pm sqrt(k1^2+8 k2 k3)) / (2 k3) 2 no x=(-k1 + sqrt(k1^2+8 k2 k3)) / (2 k3) one point 1 T 1
R8: A-->2A, 0-->2A, 2A-->A 2 two points x=(k1 pm sqrt(k1^2+8 k2 k3)) / (2 k3) 2 no x=(k1 + sqrt(k1^2+8 k2 k3)) / (2 k3) one point 1 F 1
R9: A-->0, 0-->A, 2A-->0 2 two points x=(-k1 pm sqrt(k1^2+8 k2 k3)) / (4 k3) 2 no x=(-k1 + sqrt(k1^2+8 k2 k3)) / (4 k3) one point 1 F 1
R10: A-->2A, 0-->A, 2A-->0 2 two points x=(k1 pm sqrt(k1^2+8 k2 k3)) / (4 k3) 2 no x=(k1 + sqrt(k1^2+8 k2 k3)) / (4 k3) one point 1 T 1
R11: A-->0, 0-->A, 2A-->0 2 two points x=(-k1 pm sqrt(k1^2+4 k2 k3)) / (2 k3) 2 no x=(-k1 + sqrt(k1^2+4 k2 k3)) / (2 k3) one point 1 F 1
R12: A-->2A, 0-->A, 2A-->A 2 two points x=(k1 pm sqrt(k1^2+4 k2 k3)) / (2 k3) 2 no x=(k1 + sqrt(k1^2+4 k2 k3)) / (2 k3) one point 1 F 1



All 1-Species, 4-Reaction Networks
networks mixed volume shape of variety equation wrt rxn rates EDD pssv depends on rates? pos ssv shape of pssv EDD of pssv weakly reversible? deficiency
R14: A-->2A, A-->0, 0-->A, 0-->2A 1 one point x=(k3+2k4) / (k2-k1) 1 yes x=(k3+2k4) / (k2-k1)  [WHEN k1<k2] one point 1 F 1
R10: A-->2A, A-->0, 0-->2A, 2A-->0 1 two points x=((k1-k2) pm sqrt((k1-k2)^2+16 k3 k4)) / (4 k4) 2 no x=((k1-k2) + sqrt((k1-k2)^2+16 k3 k4)) / (4 k4) one point 1 F 1
R15: A-->2A, A-->0, 2A-->A, 2A-->0 1 two points x=0, (k1-k2) / (k3+2 k4) 2 yes x=(k1-k2) / (k3+2 k4)  [WHEN k1>k2] one point 1 F 1
R2: A-->0, 0-->2A, 2A-->A, 2A-->0 2 two points x=pm sqrt((2 k2-k1) / (k3+2 k4)) 2 yes* x=sqrt((2 k2-k1) / (k3+2 k4))  [WHEN k1<2k2] one point 1 T 1
R1: 0-->A, 0-->2A, 2A-->A, 2A-->0 2 two points x=pm sqrt((k1+2 k2) / (k3+2 k4)) 2 no x= sqrt((k1+2 k2) / (k3+2 k4)) one point 1 F 1
R3: A-->2A, 0-->2A, 2A-->A, 2A-->0 2 two points x=(k1 pm sqrt(k1^2+8 k2 k3+16 k2 k4)) / 2(k3+2 k4) 2 no x=(k1 + sqrt(k1^2+8 k2 k3+16 k2 k4)) / 2(k3+2 k4) one point 1 T 1
R4: A-->0, 2A-->0, 0-->A, 0-->2A 2 two points x=(-k1 pm sqrt(k1^2+8 k2 k3+16 k2 k4)) / (4 k2) 2 no x=(-k1 + sqrt(k1^2+8 k2 k3+16 k2 k4)) / (4 k2) one point 1 T 1
R5: A-->2A, 2A-->0, 0-->A, 0-->2A 2 two points x=(k1 pm sqrt(k1^2+8 k2 k3+16 k2 k4)) / (4 k2) 2 no x=(k1 + sqrt(k1^2+8 k2 k3+16 k2 k4)) / (4 k2) one point 1 T 1
R6: A-->0, 0-->A, 2A-->A, 2A-->0 2 two points x=(-k1 pm sqrt(k1^2+4 k2 k3+8 k2 k4)) / 2(k3+2 k4) 2 no x=(-k1 + sqrt(k1^2+4 k2 k3+8 k2 k4)) / 2(k3+2 k4) one point 1 F 1
R7: A-->2A, 0-->A, 2A-->A, 2A-->0 2 two points x=(k1 pm sqrt(k1^2+4 k2 k3+8 k2 k4)) / 2(k3+2 k4) 2 no x=(k1 + sqrt(k1^2+4 k2 k3+8 k2 k4)) / 2(k3+2 k4) one point 1 T 1
R8: A-->0, 2A-->A, 0-->A, 0-->2A 2 two points x=(-k1 pm sqrt(k1^2+4 k2 k3+8 k2 k4)) / (2 k2) 2 no x=(-k1 + sqrt(k1^2+4 k2 k3+8 k2 k4)) / (2 k2) one point 1 T 1
R9: A-->2A, 2A-->A, 0-->A, 0-->2A 2 two points x=(k1 pm sqrt(k1^2+4 k2 k3+8 k2 k4)) / (2 k2) 2 no x=(k1 + sqrt(k1^2+4 k2 k3+8 k2 k4)) / (2 k2) one point 1 F 1
R11: A-->2A, A-->0, 0-->2A, 2A-->A 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+8 k3 k4)) / (2 k4) 2 no x=((k1-k2) + sqrt((k1-k2)^2+8 k3 k4)) / (2 k4) one point 1 T 1
R12: A-->2A, A-->0, 0-->A, 2A-->0 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+8 k3 k4)) / (4 k4) 2 no x=((k1-k2) + sqrt((k1-k2)^2+8 k3 k4)) / (4 k4) one point 1 T 1
R13: A-->2A, A-->0, 0-->A, 2A-->A 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+4 k3 k4)) / (2 k4) 2 no x=((k1-k2) + sqrt((k1-k2)^2+4 k3 k4)) / (2 k4) one point 1 T 1

*real points in variety depend on rxn rates. if k1>2 k2, we have two complex points in the variety (and NO real points)



All 1-Species, 5-Reaction Networks
network mv shape of variety equation wrt rxn rates EDD pos ssv shape of pssv EDD of pssv weakly reversible? deficiency
R1: A-->0, 0-->A, 0-->2A, 2A-->A, 2A-->0 2 two points x=(-k1 pm sqrt(k1^2+4 k2 k4+8 k3 k4+8 k2 k5+16 k3 k5)) / 2(k4+2 k5) 2 x=(-k1 + sqrt(k1^2+4 k2 k4+8 k3 k4+8 k2 k5+16 k3 k5)) / 2(k4+2 k5) one point 1 T 1
R2: A-->2A, 0-->A, 0-->2A, 2A-->A, 2A-->0 2 two points x=(k1 pm sqrt(k1^2+4 k2 k4+8 k3 k4+8 k2 k5+16 k3 k5)) / 2(k4+2 k5) 2 x=(k1 + sqrt(k1^2+4 k2 k4+8 k3 k4+8 k2 k5+16 k3 k5)) / 2(k4+2 k5) one point 1 T 1
R3: A-->2A, A-->0, 0-->2A, 2A-->A, 2A-->0 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+8 k3 k4+16 k3 k5)) / 2(k4+2 k5) 2 x=((k1-k2) + sqrt((k1-k2)^2+8 k3 k4+16 k3 k5)) / 2(k4+2 k5) one point 1 T 1
R4: A-->2A, A-->0, 2A-->0, 0-->A, 0-->2A 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+8 k3 k4+16 k3 k5)) / (4 k3) 2 x=((k1-k2) + sqrt((k1-k2)^2+8 k3 k4+16 k3 k5)) / (4 k3) one point 1 T 1
R5: A-->2A, A-->0, 0-->A, 2A-->A, 2A-->0 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+4 k3 k4+8 k3 k5)) / 2(k4+2 k5) 2 x=((k1-k2) + sqrt((k1-k2)^2+4 k3 k4+8 k3 k5)) / 2(k4+2 k5) one point 1 T 1
R6: A-->2A, A-->0, 2A-->A, 0-->A, 0-->2A 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+4 k3 k4+8 k3 k5)) / (2 k3) 2 x=((k1-k2) + sqrt((k1-k2)^2+4 k3 k4+8 k3 k5)) / (2 k3) one point 1 T 1



All 1-Species, 6-Reaction Networks
networks mv shape of variety equation wrt rxn rates EDD pos ssv shape of pssv EDD of pssv weakly reversible? deficiency
R1: A-->2A, A-->0, 0-->A, 0-->2A, 2A-->A, 2A-->0 2 two points x=((k1-k2) pm sqrt((k1-k2)^2+4(k3+2 k4)(k5+2 k6))) / 2(k5+2 k6) 2 x=((k1-k2) + sqrt((k1-k2)^2+4(k3+2 k4)(k5+2 k6))) / 2(k5+2 k6) one point 1 T 1



Original 25 2-Species, 2-Reaction Networks
networks EDD degree dim weakly reversible deficiency dim of sing locus shape of graph relationship with rate constants eqn of SS variety (xa=x, xb=y) positive SS variety EDD of PSSV
R22: A-->0, B-->A+B 1 1 1 F 1 -1 line slope k1/k2 y= k1/k2 x y=k1/k2 x 1
R23: A-->B, B-->A 1 1 1 T 0 -1 line slope k1/k2 y= k1/k2 x y=k1/k2 x 1
R9: B-->2B, A-->B+A 1 1 1 F 1 -1 line slope -k2/k1 y= -k2/k1 x empty 0
R5: B-->A, 2B-->B+A 2 2 1 F 1 -1 horizontal parallel lines lines y=0, -k1/k2 y(k1+k2 y)=0 empty 0
R8: B-->A, 2B-->2A 2 2 1 F 1 -1 horizontal parallel lines lines y=0, -k1/2k2 y(k1+2 k2 y)=0 empty 0
R16: B-->A, B+A-->2A 2 2 1 F 1 0 plus sign lines y=0, x=-k1/k2 y(k1+k2 x)=0 empty 0
R21: A+B-->2B, B-->A 2 2 1 F 1 0 plus sign lines y=0, x=k2/k1 y(k1 x-k2)=0 x=k2/k1 (vertical) 1
R25: A+B-->A, A-->A+B 2 2 1 T 0 0 plus sign lines x=0, y=k2/k1 x(k2-k1 y)=0 y=k2/k1 (horizontal) 1
R12: A+B-->2B, 2A-->2B 2 2 1 F 1 0 rotated X at origin lines x=0 and y=-2k2/k1 x x(k1 y+2 k2 x)=0 empty 0
R14: 2A-->A, A+B-->B 2 2 1 F 1 0 rotated X at origin lines x=0 and y=-k1/k2 x x(k1 x+k2 y)=0 empty 0
R13: 2A-->A+B, A+B-->2B 2 2 1 F 1 0 rotated X at origin lines x=0 and y=-k1/k2 x x(k1 x+k2 y)=0 empty 0
R18: 2B-->0, B+A-->A 2 2 1 F 1 0 rotated X at origin lines y=0 and y=-k2/2k1 x y(2 k1 y+k2 x)=0 empty 0
R19: A+B-->2A, 2A-->2B 2 2 1 F 1 0 rotated X at origin lines x=0 and y=2k2/k1 x x(k1 y-2 k2 x)=0 y=2 k2/k1 x 1
R20: A+B-->2B, 2B-->A+B 2 2 1 T 0 0 rotated X at origin lines y=0 and y=k1/k2 x y(k1 x-k2 y)=0 y=k1/k2 x 1
R6: 2A-->2B, 2B-->2A 2 2 1 T 0 0 X at origin slopes are pm sqrt(k1/k2) y^2=k1/k2 x^2 y=sqrt(k1/k2)x 1
R1: 2A-->2B, 2B-->A+B 2 2 1 F 1 0 X at origin slopes are pm sqrt(2k1/k2) y^2=2 k1/k2 x^2 y=sqrt(2 k1/k2)x 1
R7: 2A-->A+B, 2B-->A+B 2 2 1 F 1 0 X at origin slopes are pm sqrt(k1/k2) y^2=k1/k2 x^2 y=sqrt(k1/k2)x 1
R2: 2A-->2B, B-->A 3 2 1 F 1 -1 parabola through (1,2k1/k2) y=2 k1/k2 x^2 y=2 k1/k2 x^2 3
R3: 2A-->A, B-->A+B 3 2 1 F 1 -1 parabola through (1,k1/k2) y=k1/k2 x^2 y=k1/k2 x^2 3
R4: B-->A, 2A-->B+A 3 2 1 F 1 -1 parabola through (1,k2/k1) y=k2/k1 x^2 y=k2/k1 x^2 3
R10: 2B-->0, A-->B+A 3 2 1 F 1 -1 sideways parabola through (2k1/k2,1) x=2 k1/k2 y^2 x=2 k1/k2 y^2 3
R11: A-->2B, 2B-->A 3 2 1 T 0 -1 sideways parabola through (k2/k1,1) x=k2/k1 y^2 x=k2/k1 y^2 3
R15: A+B-->0, 0-->A+B 4 2 1 T 0 -1 hyperbola through (k2/k1, 1) and (-k2/k1, -1) xy=k2/k1 xy=k2/k1 4
R17: 0-->2B, B+A-->A 4 2 1 F 1 -1 hyperbola through (2k1/k2, 1) and (-2k1/k2, -1) xy=2 k1/k2 xy=2 k1/k2 4
R24: A+B-->A, 0 -->B 4 2 1 F 1 -1 hyperbola through (k2/k1, 1) and (-k2/k1, -1) xy=k2/k1 xy=k2/k1 4
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